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The fundamental problem of acoustoelasticity is that of determining the relations be- 
tween the parameters of a propagating ultrasonic wave and the components of the preload ten- 
sor [1-3]. Since acoustoelastic effects are very small, the problems considered are usually 
[3] given in a linear formulation. Most studies are confined to the motion of a wave along 
one of the principal directions of the prestress tensor, when the acoustoelasticity resol- 
vents are simplified [1-5]. An exception is [6], where formulas were obtained in the first 
approximation for the absolute phase differences. The phenomenon of birefringence (rotation 
of the polarization of the shear waves in a ray and a change of phases as a result of that 
rotation) was not explained with sufficient accuracy there. Below, quasi-isotropic approxi- 
mation [7] is used to analyze this effect. With the formulas obtained the theory developed 
in integrated photoelasticity can be applied, without substantial changes, to problems of 
acoustoelasticity [8, 9]. The topics discussed in this paper were not adequately reflected 
in a comparative analysis of these phenomena [4]. 

i. We proceed from the expression for the density of strain energy (internal energy) 
per unit mass of the medium [i]: 

t (~  ~ I~IK~ , v2K1K2+ 4 ) W:-~-  ~ K I ~ K 2 ~  ~ ~-%K~ . 

Here K z = Eii; K2 = EijEji; K3 = EijEkjEki; ~, ~ are Lame coefficients; vz, v2, v3 are third- 

order elastic constants: Elk = (i/2)(8/SXk)Ui ~ + (8/Sxi)uk ~ + (8/Sxi)Un~ ~ is the 
Cauchy-Green strain tensor; ui ~ = u i + w i is the strain vector, represented as the sum of 
the strains u i and w i due to a preload and an ultrasonic wave; and p is the density of the 
medium in the unstrained state; the tensor summation rule is applied over recurring indices. 
The solution is obtained in the Lagrangian orthogonal coordinate system. The medium is as- 
sumed to be isotropic and homogeneous initially. 

The resolvents are derived by using an expansion in three small parameters [6]; i) the 
linearized preload tensor oij is assumed to be small relative to the Lame constants ([(oijl/ 

= E 0 ~ 10-3-10-5); 2) the stress tensor of the ultrasonic wave is an order of magnitude 
smaller than oij; 3) the ultrasonic wavelength X is at least an order of magnitude smaller 
than the characteristic size of the preload field. It can be shown [i] that to within the 
first order of smallness (in g0) inclusively the motion of the ultrasonic wave is described 
by 

0 Wj (l.i) ax m C~m# ~x--~ = p at--~ wn. 

The componen t s  o f  t h e  t e n s o r  Cnmjs,  l i n e a r i z e d  in  t h e  p r e s t r a i n s  ~ i j ,  r e s p e c t i v e l y ,  a r e  

8 
C~mj~ = c~mj~ § cm~klehlS~ § cn~p~7-~pu~ § cp~j~-~xpu~ § C~j~lehI. 

Here  Cnmjs = ~ n m d j s  + ~(dn jSms  + 5nsSmj ) ;  t h e  v a l u e s  o f  t h e  t e n s o r  Cnmjsk~ a r e  g i v e n  in  
[1,  2 ] .  

We n o t e  Eq. ( 1 . 1 )  in  f a c t  d e s c r i b e s  t h e  p r o p a g a t i o n  of  an u l t r a s o n i c  wave in  an a n i s o -  
t r o p i c  medium w i t h  an a s y m m e t r i c  s t r e s s  t e n s o r :  Cnmjs = Cjsnm has  a l ower  symmet ry  t h a n  Cnmjs 
and Cnmis = Cnmsl does  n o t  a l w a y s  o b t a i n .  At t h e  same t i m e  t h i s  e q u a t i o n  does  n o t  t a k e  wave 
a t t e n u a t i o n  i n t o ~ a c c o u n t  and t h e  law o f  c o n s e r v a t i o n  o f  e n e r g y  h o l d s  f o r  i t  [ 1 0 ] .  
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To derive this law we fold both parts of (i.i) with 8Wn/3t and after manipulations we 
write 

�9 0 

% E  + o-~-g s~ = o, (1.2) 

where E = (i/2)[p((~/3t)Wn)((a/3t)w n) + Cnmjs((3/3Xm)Wn)((8/3Xs)Wj)] denotes the density of 

the acoustic wave energy; and S m = -Cnmjs(3/BXs)Wj(8/St)w n is the energy flux tensor. 

In accordance with the method of geometric acoustics, we look for a solution of Eq. 
(i.i) in the form 

wi = Wi exp im(~ - -  t). ( 1 . 3 )  

Substitution of the trial solution (1.3) transforms Eq. (!.I) (the general exponent exp i~. 
(~ - t) has been omitted from the equation); 

[ o W ( o Wi+k, o W) [po)~Wn--Cnr.j~kmk~W~l + i 2 p c o ~  n + C~m~ k m ~  ~ i + 
(1.4) 

] [ 0] 0 o o Cnmj~ ~ W j  W,~ = 0 + wjo-- C (c.,.j~#~) +o-C -P-TY 

(k i = ~3~/3x i are the wave vector components). 

With the assumptions made (the characteristic size of the load field is considerably 
greater than the wavelength ~) the absolute value of the wave vector k = 2~/~ appears as a 
large parameter and we use the ray method [5] to solve Eq. (1.4). 

In the zeroth approximation of this method solving the system of differential equations 
reduces to solving the algebraic system 

[p~6~j - -k2C, ,~3lWj  = O. ( 1 . 5 )  

Without loss of generality in our discussion we introduce a local coordinate system such 
that the axis x 3 = z is directed along the wave vector k. 

We make the axis x I = x and x 2 = y coincide with the directions of the acoustic tensor 
Cnj = Cn3j3 in the x, y plane. Henceforth by analogy with photoelasticity we refer to these 
directions as the quasiprincipal directions in the x, y plane. 

The system of homogeneous equations (1.5) has a nontrivial solution if the determinant 
of the system is zero: 

det [9v~6,~--c,~] = O. ( 1 . 6 )  

The condition determines the phase velocity v = ~/k of longitudinal (Vp) and transverse 
(Vs) waves. 

Equation (1.6) can be solved only by numerical methods for an arbitrary anisotropic 
solid. The distinctive features of the solution of (1.6) for the linearized mode] of an 
artibrary nonlinear solid were considered in [i0]. The analysis of (1.6) is simplified 
within the framework of the assumptions used (in practice the wave velocities are less than 
i0 -~ [4]). In the coordinate system adopted the characteristic equation can be rewritten as 

2 C2 

(c:~3 - -  pv~) = c31 ~ ( 1 . 7 )  
ell -- ~l; 2 c2, 2 - -  pv 2" 

From ( 1 . 7 )  we see  t h a t  a p a r t  f rom t e r m s  o f  t h e  f i r s t  o r d e r  o f  s m a l l n e s s  i n c l u s i v e l y  in  c o  
the quasilongitudinal wave velocity Vp is found in the same way as in propagation along one 
of the principal directions, i.e., the right side of Eq. (1.7) is assumed to be zero: 

vv = v~,o § ~(o~ + oyy) § ~=.  (1.8) 

Here Vp0 = /(~ $ ~)]; is the velocity of the longitudinal wave in the absence of stresses; 
and a and ~ are constants determined in terms of first-order and third-order elastic con- 
stants [2]. 

Substituting Vp into Eq. (1.5), we find the polarization of the quasilongitudinal wave 
(c13 , c23 , i + p) (as the eigenvector of the acoustic matrix) to within the first order of 
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smallness inclusively. The quantity W z is determined by the initial data, the ray trajec- 
tories, and the transport equation. Since the acoustic tensor is perturbed only slightly by 
the prestress, the curvature of rays in the initially isotropie solid can be disregarded. 

The transport equation, according to the ray method, is obtained by setting the first- 
order terms in k equal to zero in Eq. (i.i). Instead of the transport equation we can use 
the law of conservation of energy, which, to within the first-order terms, becomes 

a o (vmEo) = O, --gT Eo + 

where E 0 = (i/2)p~2Wz 2 is the average value of the energy density; Vm~ = [6m3 + (i - ~m3)" 
(C3m33 + Cm3)/c33]v p is the group velocity vector of the quasilongitudinal wave. As we see 
from the above formula, the group velocity does not have the same direction as the phase 
velocity; problems associated with this effect are discussed from the measuring aspects in 
I l l ] .  

2. We write the zeroth approximation of quasitransverse waves in the form [7] 

wi = W~ expl k ( 1 ) d l - - ~ t  ( i = x , y ) .  (2.1) 

Here k 2 = 2p~2/(cii + c22) determines the wave number of the transverse waves. After sub- 
stituting (2.1) into (1.4) with allowance for the smallness of the terms, we obtain a trun- 
cated system 

i [2p(~ a 

�9 " 0 ~ c22-- Cll Wx], 

which in the zeroth approximation can be written in the matrix form 

where 

W~ = - -  iCP W~ ' 
(2 .2)  

2V~o~ ~ ~ ' 

P =  
( l yy  - -  O:e ~ 

oxu 2 

In calculating the values of the acoustoelastic constant C we considered that 

~L ~ V 3 
0 n - - c 2 2 - -  ~ 

E a r l i e r ,  Eqs. (2 .2)  had been de r ived  only fo r  the  p ropaga t ion  of waves along the  p r i n -  
c i p a l  d i r e c t i o n  of  the  p r e s t r e s s  t en so r  [5].  N a t u r a l l y ,  the  form of  the  equa t ions  in the  
lowest approximation does not depend on whether or not the direction of wave propagation 
coincides with the principal direction. 

The quasitransverse waves are refined just as are the quasilongitudinal waves are: 
After finding W x and Wy from (2.2), we obtain the longitudinal part of (1.5): W z = -(cl3W x + 
c2sWy)/(X + B); the conservation law determines the amplitude and group velocity of the wave. 

It is significant that the birefringence equations (2.2) coincide to within a constant 
C with the photoelasticity birefringence equations, whose solution was studied rather fully 
in [8]. The approximate solution of (2.2) relates the experimentally determined parameters 
and the stress in relatively simple form [12, 13]: 

A cos2r = C ~ o== + q~zdz, Asin 2~ = 2C~ ~=flz. (2 .3)  
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Here the angle ~ (isocline parameter) and A (phase difference) of transverse waves are de- 
termined from measurements in the same way as in the case of a two-dimensional sample. 

Using the equilibrium equations, we can transform the ray integrals (2.3) into the 
form [14, 15] 

y oj 
a~fl l  ~ ~ H (m' ,  O, z) din' - -  A (m, O, z), 

(2.4) 

o~fll - -  a m  H (m, O, z) + ~ c tg  ? ~ _ iz o, 

which reduces the problem of finding Ozz, 3Ozz/SZ to the standard procedure of inverting the 
Radon transform at those points on condition that the contour is convex. In Eq. (2.4) m I is 
either of two extrme points of the projections of the contour of the cross section onto the 
m axis; ~ is the angle between the z axis and n, the normal to the lateral surface; F is the 
arc length on the contour, measured from an arbitrary point; and the values of Ozz(~1) and 
Ozz(~ 0) at the ends Of the ray are determined from the boundary conditions by tangential illu- 
mination at these points with the condition that the contour is convex. 

Inclusion of the compatibility equations for the stresses makes it possible to deter- 
mine the other components of the stress tensor of the solution of the first-order Lame equa- 
tions (not containing normal rotation) [15]. The specific algorithm for such reconstruction 
of an axisymmetric stressed state was considered in [16]. 

In acoustoelasticity the additional use of a longitudinal makes it possible to find 
the first invariant of the stress tensor. Indeed, the prestress-induced change that occurs 
in the transit time of the longitudinal wave (phase difference) is described by the ray inte- 
gral 

Co j ~zz + C1 ( ~  + a~) dl = Cof (m, O, z), 

where C O and C I are constants determined by the parameters Vp0 , m, and ~ of (1.8). The ap- 
plication of the inverse Radon transform to the linear combination of ray integrals 

f+(1--Cl) A=iozz+om~+d+2G)~jl 

reproduces the value of the two-dimensional invariant o11 + amm = 02; the value o f  Ozz is 
assumed to be known from previous measurements (2.4). Using only equilibrium equations and 
the boundary conditions on the free lateral surface, we can thus determine the components 
Oxx and Oyy separately. 

Indeed, when we eliminate Oxy , Oxz , and ay z from the equilibrium equations, we have 

a 2 a 2 a 2 

and by making the substitution Oyy = o 2 - Oxx we reduce it to the two-dimensional Poisson 
equation [15] 

a 2 a 2 

A + ~ x  = a y " -  (r2 + " ~  crzz 

with the boundary condition Oxx = O2ny 2 . The value of is found from the equilibrium 
equations by using the curvilinear integral of [15]. ~ 

With the proposed simplest variant of the theory a generalization can be made quite 
easily to the case when nonlinear attenuation is included [17]. For stationary signals 
this generalization comes down to introducing third-order complex elastic constants. The 
methods of tomography of the tensor field of stresses with allowance for attenuation are 
modified in much the same way as is the tomography of scalar field [18] and so this will 
not be expounded here, especially since the experimental aspect of this topic has been 
studied very little thus far. 

In conclusion, we note that when the difficulties involved in measuring the phase and 
polarization parameters of ultrasonic waves in three-dimensional objects are overcome, the 
results derived above make it possible to use tomographic methods for acoustodiagnostics 
of prestress [8, 15, 16]. 
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